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Development of Next-Generation Heat
Exchangers for Hybrid Power Generation
Kashif Nawaz, Oak Ridge National Laboratory

Design and development of a cost-effective high-efficiency, high
temperature, ceramic/steel alloy heat exchanger.
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Project Overview 24 mo.

Team member Location Role in project

Oak Ridge National Laboratory | Oak Ridge, TN | Project Lead

University of South Carolina Columbia, SC | System Integration
Topology Optimization Development of Materials Development of Manufacturing
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Solution Strategy

System integration and optimization Topology optimization and Multiphysics modeling
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Value proposition and techno-economic analysis Additive manufacturing process
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Innovation and Objectives

Innovation
« High-performance computing:
achieve optimum solution
« Topology optimization: maximize
thermal-hydraulic performance
« Multi-physics modeling: investigate
thermal-mechanical conjugate problem

« Additive manufacturing: complex
geometry and materials

« Advanced visualization: quality
assurance and fracture analysis

Task outline, technical objectives

» Design: unprecedented thermal-
hydraulic performance-Target 200%
improvement UA from state-of-the-art.

« Materials: suitable thermal
conductivity and sufficient mechanical
strength at temperatures ~1000°C.

« Manufacturing cost: reduced by at
least 30% compared to the state-of-
the-art technology.
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Tech-to-Market objectives

« Engage commercial entities: Isotherm
Inc., Atrex Energy

» SOFC industry will be first target

» Stakeholders from additive
manufacturing industry are onboard




Progress- Value Proposition
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* Improved resistance to thermal
fluctuations

Improvement in Heat Transfer Coefficient

* Design of headers is a challenge
* Modularity is difficult

* Modularity is possible

» Commercially available foams
OAA.
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Progress- Design Optimization

% max UA vs. Downstream Distance (m)
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Air (tube-side, cold) P, = 11.67 psi
T=[673 K, 1016 K] Pout =-24.12 ps
T_out =[916 K, 930K] AP ~ 35.79 psi

Infiltrated SiC (wall)
[814 K, 1022 K]

QPG @

CHANGING WHAT'S POSEIBLE



Progress- Thermomechanical Optimization

« Obtain conjugate heat transfer solution
« Map to thermal expansion simulation
* Quantify structural integrity (stress, displacement thickness)

Temparature (K)
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« Test if displacement thickness is within design limits
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Progress- Design Optimization
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Progress- Manufacturing Process

Obtaining the best printing parameters for

parts

» For testing post processing

* Prelude into large heat exchanger printing

* Dry time, saturation (or binder amount),
and spread speed

Sample pfinting
(medlum -sized printer, Innovent)
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HxN printing
(largest printer, M-flex)
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Progress- Manufacturing Process

Using small puck and cuboid printing

parameters (on largest printer) is not feasible

» Size of parts and binder choice become
important

« Buckling, warping, and cracking can be
issues

— Heat exchanger printing
Printing process flow \ (large-sized printer, M-flex) /

Printing Depowdering,
Proces_s Infiltration
and curing /sintering

Powder

preparation

Sample printing
(medium-sized printer, Innovent)
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Progress- Manufacturing Process

» Goal: Make hermetically sealed, high SiC content part parts by 3D printing
followed by subsequent infiltration processes

» Approach:

— SIC printed pucks by binder jetting
* Reactive infiltration with molten silicon

* Infiltration and pyrolysis of polymer precursor for carbon, followed by
reactive infiltration with molten silicon

* Infiltration and pyrolysis of polymer precursor for SiC with SiC precursor

PIPs

— SIC sintering with sintering aid
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Achieved desired
permeability

Cannot make

In progress

Binder jet SIC powder from Sigma
Aldrich (-400) In ExOne Innovent

4 ¥ N\
PIP with S >
 phenolic

ycarbosiiane

i
~ Melt Infiltrate
with Si

“Test all samples in the
permeability/pressure fixture —
find coating if needed

Print alumina- Print alumina Print alumina-
coated SiC in coated SiC with | coated SiC with
binder jet lithography Robocasting
Liquid-phase
Sinter



Progress- Manufacturing Process

Molten Si Infiltration
2 hours | 4 hours | 8 hours load cell —
1550 °C DONE
1670 °C DNW DNW DNW fush-rad
1800 °C DNW DNW DNW
1 phenolic PIP i pressure . airb
2 hours | 4 hours | 8 hours Saude g chambek
1550 °C
1670 °C DONE DONE DONE
1800 °C DONE | DONE | DONE [acuim:gates
2 phenolic PIP b e
2 hours | 4 hours | 8 hours
1550 °C [~ test specimen
1670 °C DONE :
line to
1800 °C DONE DONE racuum pump

Leak Rates for 8 hr runs with one PIP vacuum

600 valve chanier

_ ) Processing Temperature (C) Leak Rate (psi/min)

1000 1550 1440
- . 8 hrs, 1 PIP 1670 744
1800 0.85

intrinsic to tester 1.12
] 1554 1600 165 60:  Am0 M0 i overinfiltration of Si 1.16

Leak Rate (psi/min)

Processing Temperature (C)
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Progress- Material Characterization

Mechanical Evaluation of Siliconized SIC Composites
Strength (MPa)
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Progress- Material Characterization

Fractographic Analysis of Test Specimen to Determine Fracture Toughness

Bending
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Determination of Young’s Modulus by Impulse Excitation and Coefficient

Thermal Strain (%)

Progress- Material Characterization

of Thermal Expansion by Thermomechanical Analysis
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Progress- Materials Characterization

CT scans of Coil HXN — tool for printing, finding defects

Isometric view Video of scans in z-direction

Machine: Metrotom
Resolution: ~20 micron
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Progress- Materials Characterization

Preliminary assessment of AFA alloy developed at ORNL
Alloy composition

Sand mold for casting

Alloy Fe Cr | Ni [Al]Si Hf |Y B C Nb | Mo | W | Ti| Zr
HP 36.80 | 25|35 - 1.25 | - - - 045 | 15|~ - |- |-
(Baseline

alloy)

#11A 3387 (25354 |05 |015]007]0.01]|04 |1 - -1~ 1-

Variation of mechanical strength with temperature

Tensile Strength Major thermo-physical properties
700 T.°€C Specific Heat CTE (x10°) Density (g/cc) | Thermal E (Gpa)
Capacity (J/g K) Conductivity
600 * = o (W/mK)
E 500 : 25 0.48 132 7.58 10.542 162.987
s 50 0487 7.58 10.988
< 400 100 0.498 13.9 7.56 11.809 159.750
£ 200 0.522 14.34 753 13.529 154.700
2 300 B 300 0.542 14.67 7.49 15.303 150.080
= 400 0563 15.01 7.46 17.149 143.470
& 200 500 0.584 15.29 7.42 18.855 137.690
B ® 600 0.605 15.72 7.38 20.763 132.790
= 100 & 700 0.624 16.35 7.34 22,687 126,630
c 800 0.644 17.92 7.28 22.737 118.220
= 0 900 0.665 18.56 7.22 25.017 112,130
1000 0.682 18.76 7.18 26.793 107.160
0 200 400 600 800 1000 1200 ~100 T —— >3 o -

Temperature (°C)
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Progress- Development of cost model

* High Productivity * Low Productivity

« Low Maintenance * More Maintenance

* Isotropic Properties * Non-isotropic properties

1Part 22 Hours 140+ Houry
4 Parts -235 Hours 200+ Hours
Comparison of different AM processes Cost of AFA alloy developed at ORNL
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Progress- Development of cost model

Small Operation

Productivity: 2,400 in3/day

Operating Cost: $70k/year
($1921/day)

Personnel Cost: $100K/year
($273/day)

Energy Cost: $100/day
Total Cost: $565.75/day
Cost per in3: $0.24

Medium Operatid

Productivity: 16,200 in3/day

Operating Cost: $105k/year
($288/day)

Personnel Cost: $300K/year
($822/day)

Energy Cost: $200/day
Total Cost: $1,309/day
Cost perin3: $0.08

Large Operation
Productivity: 113,400 in3/day

Operating Cost: $190k/year
($520/day)

Personnel Cost: $1.6M/year
($4,383/day)

Energy Cost: $500/day
Total Cost: $5,404/day
Cost perin3: $0.05
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Market Applications
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- ",

““rBraytonEnergy

bho=al

Gl e

NHAT'S POSSIBLE

ATREX

ENERG Y

POWERFUL POSSIBILITIES

Modular power generation/concentrating
solar

Aerospace- Gas turbine engines/hybrid
electric propulsion

Nuclear- VHTR/Molten salt reactors
o Transformational Challenge Reactor




Risks

» Design process, materials selection and
manufacturing process are interdependent.

« High-temperature materials in general have
low thermal conductivity.

* Presence of moisture in working fluids can /
cause material degradation.

« 3D printing with ceramic materials is a
nascent area. Process optimization is
needed to achieve topographical features \
and hermetically seal.

« Atrade-off between design, manufacturing
process and performance is mandatory to
achieve a low-cost device.

« System integration of different hybrid power
systems consisting of the heat exchangers.
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Kashif Nawaz
nawazk@ornl.gov
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